Evaluation of Hydrogen Bonding Complementarity between a Secondary Sulfonamide and an α-Amino Acid Residue

Joseph M. Langenhan,[†] John D. Fisk,[§] and Samuel H. Gellman^{*,†,§}

Department of Chemistry and Graduate Program in Biophysics, University of Wisconsin, Madison, Wisconsin 53706

gellman@chem.wisc.edu

Received June 6, 2001

ABSTRACT

We report an initial step toward the development of sulfonamide-based complements for extended peptide strands. A molecule containing one secondary sulfonamide unit and one valine residue linked by a turn-forming segment was found by IR and NMR to exhibit a doubly hydrogenbonded folding pattern in chloroform.

Non-peptidic molecules that display hydrogen bonding complementarity to peptides in the extended (" β -strand") conformation¹ are of interest for biomedical applications. Such molecules might disrupt the formation of amyloid fibrils,² β -sheet type aggregates that are associated with a variety of diseases.³ Non-peptidic β -strand complements could also provide a basis for disrupting protein—protein interactions that depend on the recognition of peptide segments in an extended conformation.⁴ Here we explore the prospect that secondary sulfonamide groups might be employed to generate hydrogen bonding complements to peptide β -strands.

Secondary sulfonamides differ conformationally from secondary carboxamides in two important ways: (i) the barrier to rotation about the S-N bond is much smaller than

the barrier to rotation about the C–N bond,⁵ and (ii) one of the H–N–S=O torsion angles is often near $0^{\circ,5}$ while the H–N–C=O torsion angle is usually around 180°. These

ORGANIC LETTERS

2001 Vol. 3, No. 16

2559 - 2562

Department of Chemistry.

[§] Graduate Program in Biophysics.

Nowick, J. Š.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.;
Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654. Nowick, J. S.; Tsai, J. H.;
Bui, Q.-C. D.; Maitra, S. J. Am. Chem. Soc. 1999, 121, 8409. Nowick, J.
S.; Pairish, M.; Lee, I. Q.; Holmes, D. L.; Ziller, J. W. J. Am. Chem. Soc. 1997, 119, 5413. Smith, E. M.; Holmes, D. L.; Shaka, A. J.; Nowick, J. S.
J. Org. Chem. 1997, 62, 7906. Kemp, D. S.; Bowen, B. R.; Muendel, C. C.
J. Org. Chem. 1990, 55, 4650. Schrader, T. H.; Kirsten, C. N. J. Am. Chem. Soc. 1997, 119, 12061.

⁽²⁾ Reports of molecules that disrupt amyloid aggregation: Pallitto, M. M.; Ghanta, J.; Heinzelman, P.; Kiessling, L. L.; Murphy, R. M. Biochemistry 1999, 38, 3570. Ghanta, J.; Shen, C.-L.; Kiessling, L. L.; Murphy, R. M. J. Biol. Chem. 1996, 271, 29525. Tjernberg, L. S.; Lillichook, C.; Callaway, D. J. E.; Naslund, J.; Hahne, S.; Thyberg, J.; Terenius, L.; Nordstedt, C. J. Biol. Chem. 1997, 272, 12601. Tjernberg, L. O.; Naslund, J.; Lindqvist, F.; Johansson, J.; Karlstrom, A. R.; Thyberg, J.; Terenius, L.; Nordstedt, C. J. Biol. Chem. 1996, 271, 8545. Soto, C.; Kascsak, R. J.; Saborio, G. P.; Aucutrier, P.; Wisniewski, T.; Prelli, F.; Kascsak, R. J.; Saborio, G. P.; Aucutrier, P.; Wisniewski, T.; Prelli, F.; Kascsak, R.; Mendez, E.; Harris, D. A.; Ironside, J.; Curran, G.; Kumar, A.; Frangione, B. Lancet 2000, 355, 192. Poduslo, J.; Curran, G.; Kumar, A.; Frangione, B.; Soto, C. J. Neurobiol. 1999, 31, 371. Soto, C.; Sigurdsson, E. M.; Morelli, L.; Kumar, R. A.; Castano, E. M.; Frangione, B. Nat. Med. 1998, 4, 822. Soto, C.; Kindy, M. S.; Baumann, M.; Frangione, B. Biochem. Biophys. Res. Commun. 1996, 273, 13203.

⁽³⁾ An alternative approach toward addressing human amyloid disorders involves stabilization of native protein conformation: Klabunde, T.; Petrassi, H. M.; Oza, V. B.; Raman, P.; Kelly, J. W.; Sacchettini, J. C. *Nat. Struct. Biol.* **2000**, *7*, 312. Miroy, G. J.; Lai, Z.; Lashuel, H. A.; Peterson, S. A.; Strang, C.; Kelly, J. W. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, *93*, 15051.

⁽⁴⁾ The PDZ domain recognizes extended strands: Harrison, S. *Cell* **1996**, 86, 341. Doyle, D.; Lee, A.; Lewis, J.; Kim, E.; Sheng, M.; MacKinnon, R. *Cell* **1996**, 85, 1067. Cabral, J.; Petosa, C.; Sutcliffe, M.; Raza, S.; Byron, O.; Poy, F.; Marfatia, S.; Chishti, A.; LIddington, R. *Nature* **1996**, *382*, 649.

conformational disparities lead to a difference in hydrogen bonding behavior. The N-H and C=O of a secondary carboxamide cannot interact simultaneously with a closely spaced acceptor/donor pair. In contrast, the N-H and S=O of a secondary sulfonamide can achieve this type of twopoint interaction. These structural considerations led us to contemplate the hydrogen bonding motif shown in Figure 1, in which a secondary sulfonamide interacts with both the

Figure 1. The two-point hydrogen-bonded interaction between a secondary sulfonamide group and the C=O and N-H of a single peptide residue.

C=O and N-H of a single α -amino acid residue. A general strategy for designing sulfonamide-based β -strand mimics could be achieved if this two-point interaction were favorable, and if we could identify amino sulfonic acid residues that allow complementary hydrogen bonding between an oligo-sulfonamide^{6,7} and an extended peptide strand.

Here we report our initial step toward the development of sulfonamide strand mimics, using a hairpin folding motif to evaluate hydrogen bonding complementarity between a single secondary sulfonamide group and an α -amino acid residue in an organic solvent. Molecular hairpins have been previously employed to evaluate hydrogen bonding complementarity in the context of amide, vinylogous amide, urea, and hydrazine functionalities.^{1,8} To achieve the desired two-point hydrogen bond between the peptide and sulfonamide groups (Figure 1), we required a turn unit containing two amino termini. The prolyl-(1,1-dimethyl)-1,2-diaminoethyl turn previously described for linking two peptide strands via their C-termini⁹ appeared suitable. Thus, molecule **1**, containing one secondary sulfonamide unit and one valine residue to

(7) Peptides that bind to oligosulfonamides have been identified previously through screening processes: Gennari, C.; Nestler, H.; Salom, B.; Still, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 1765. Brouwer, A.; Linden, H. v. d.; Liskamp, R. J. Org. Chem. 2000, 65, 1750. Lowik, D.; Weingarten, M.; Broekema, M.; Brouwer, A.; Still, W.; Liskamp, R. Angew. Chem., Int. Ed. 1998, 37, 1846. Lowik, D.; Mulders, S.; Cheng, Y.; Shao, Y.; Liskamp, R. Tetrahedron Lett. 1996, 37, 8253.

(8) Nowick, J. S. Acc. Chem. Res. **1999**, 32, 287–296. Hagihara, M.; Anthony, N. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. **1992**, 114, 6568. which the sulfonamide can form hydrogen bonds, was synthesized and examined for intramolecular hydrogen bonding using IR and NMR methods.¹⁰

We compared the N–H stretch region IR spectrum of 1 to the IR spectrum of non hydrogen bonded reference compounds 2 and 3 (Figure 2). The spectra were recorded

Figure 2. IR spectra of 1-3 at 1 mM in CDCl₃.

at 1 mM in CDCl₃, a concentration at which no aggregation of 1 occurs (vide infra). On the IR time scale hydrogen bonding equilibria are slow, and discrete bands representing hydrogen bonded and non hydrogen bonded states can be observed for a given NH group. The spectrum of reference 2 contains one NH absorbance, at 3428 cm⁻¹. This signal has been attributed to an NH involved in a "C₅ interaction," a weak intraresidue five-membered ring N-H···O=C interaction.¹¹ Two bands are observed in the spectrum of reference **3**, a non hydrogen bonded carboxamide NH

absorbance (3438 cm⁻¹) and an absorbance at 3389 cm⁻¹, which corresponds to the reported range for non hydrogen bonded sulfonamide NH stretch.^{6a,12} These reference compound data allowed us to interpret the more complex

⁽⁵⁾ Radkiewicz, J. L.; McAllister, M. A.; Goldstein, E.; Houk, K. N. J. Org. Chem. **1998**, 63, 1419. Heyd, J.; Thiel, W.; Weber, W. Theochem **1997**, 391, 125.

⁽⁶⁾ Secondary oligosulfonamides: (a) Gennari, C.; Salom, B.; Potenza, D.; Longari, C.; Fioravanzo, E.; Carugo, O.; Sardone, N. Chem. Eur. J. 1996, 3, 644. (b) Gude, M.; Piarulli, U.; Potenza, D.; Salom, B.; Gennari, C. Tetrahedron Lett. 1996, 37, 8589. (c) Gennari, C.; Nestler, H.; Salom, B.; Still, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 1763. (d) Gennari, C.; Salom, B.; Potenza, D.; Williams, A. Angew. Chem., Int. Ed. Engl. 1994, 33, 2020. (e) Monnee, M.; Marijne, M.; Brouwer, A.; Liskamp, R. Tetrahedron Lett. 2000, 41, 7991. (f) Moree, W. J.; Marel, G. A. v. d.; Liskamp, R. J. J. Org. Chem 1995, 60, 5157.

spectrum of **1**. We assign the absorbance at 3424 cm^{-1} to a non hydrogen bonded carboxamide NH stretch. The broader band with a maximum at 3366 cm^{-1} can be attributed to a hydrogen bonded carboxamide NH stretch.¹³ A discrete absorbance corresponding to a non hydrogen bonded sulfonamide NH (3389 cm^{-1} in reference **3**) is not observed in the IR spectrum of **1**; however, a small absorbance at this position could be obscured by the two carboxamide NH signals. The broad band at 3186 cm^{-1} is assigned to a hydrogen bonded sulfonamide NH^{6a,12} (a hydrogen bonded secondary carboxamide NH is never observed below 3250cm⁻¹).¹³ These results are consistent with the desired doubly hydrogen bonded conformation of **1**.

Amide chemical shift (δ NH) values in a nonpolar solvent such as CDCl₃ are sensitive to the amide group's involvement in hydrogen bonds.¹³ A hydrogen bonded NH group exhibits a downfield chemical shift relative to a non hydrogen bonded amide. Equilibration between hydrogen bonded and non hydrogen bonded states is usually fast on the NMR time scale; thus, each δ NH represents a population-weighted average. Because of the sensitivity of δ NH to hydrogen bonding, δ NH values can provide insight on intramolecular hydrogen bonding patterns. For this type of analysis, it is important that hydrogen bond-mediated intermolecular associations not contribute to δ NH. A study of δ NH versus concentration revealed that no aggregation of 1 occurs at ≤ 10 mM (Figure 3). Thus all further experiments were performed at ≤ 10 mM.

Figure 3. Amide proton NMR chemical shift of 1 at room temperature, as a function of the logarithm of concentration, in $CDCl_3$.

Table 1 contains δ NH values measured at 24 °C for 1–3 in CDCl₃ (1 mM). Only one set of ¹H resonances was observed for 1, suggesting the presence of only one amide

molecule	δ NH-1	δNH-2	δ NH-3
1	6.47	5.59	5.94
2	6.17		
3		5.42	5.24

rotamer about the proline/valine bond. Values of δ NH for 2 and 3 are references for the non hydrogen bonded states of NH-1, NH-2, and NH-3. These data provide further evidence that the desired doubly hydrogen bonded conformation of 1 is populated in CDCl₃. The sulfonamide δ NH of 1 (δ NH-3) is 0.70 ppm downfield of the sulfonamide δ NH in reference 3, indicating significant involvement in hydrogen bonding. The value δNH of **1** (δNH -1) is shifted downfield relative to the δ NH of reference 2, albeit to a lesser extent (0.30 ppm). Because the sulfonamide group is a weak hydrogen bond acceptor,^{6a,12} only a small shift in δ NH is expected for a carboxamide proton hydrogen bonded to a sulfonamide oxygen. The amide contained within the turn segment (δ NH-2) exhibits only a modest downfield shift relative to the analogous amide in reference 3, suggesting that there is little or no intramolecular hydrogen bonding to NH-2 in 1. These observations indicate that the doubly hydrogen bonded conformation of **1** is populated to a significant extent in CDCl₃.

NOESY¹⁴ data obtained for **1** in CDCl₃ (10 mM) provide further support for these conclusions. First, strong NOEs between a proline δ proton and both the valine α proton and the valine γ protons were observed (Figure 4). These

Figure 4. Selected NOEs for 1 in CDCl₃ (10 mM).

NOEs define the proline/valine rotamer as Z (as shown in Figure 4). In addition to the expected sequential NOEs (not shown), **1** displayed an interstrand NOE between the sulfonamide NH and the valine NH. The presence of this NOE provides strong evidence that a hairpin-like conformation is significantly populated in CDCl₃.

To the best of our knowledge, **1** is the first molecule for which a double hydrogen bonding pattern of the type shown in Figure 1 has been characterized. Preliminary results suggest that the prolyl-(1,1-dimethyl)-1,2-diaminoethyl turn unit is too short to allow formation of hairpins containing extended strands. Currents efforts involve the identification

⁽⁹⁾ Fisk, J.; Powell, D.; Gellman, S. J. Am. Chem. Soc. 2000, 122, 5443. (10) For other hairpin-like structures containing sulfonamides, see ref 6a.

⁽¹¹⁾ Maxfield, F.; Leach, S.; Stimson, E.; Powers, S.; Scheraga, H. *Biopolymers* **1979**, *18*, 2507 and references therein.

⁽¹²⁾ Gennari, C.; Gude, M.; Potenza, D.; Piarulli, U. Chem. Eur. J. 1998, 4, 1924.

⁽¹³⁾ For leading references, see: Gardner, R.; Liang, G.-B.; Gellman, S. J. Am. Chem. Soc. **1999**, *121*, 1806. Dado, G.; Gellman, S. J. Am. Chem. Soc. **1993**, *115*, 4228. Gellman, S.; Dado, G.; Liang, G.-B.; Adams, B. J. Am. Chem. Soc. **1991**, *113*, 1164.

⁽¹⁴⁾ Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95.

of new linkers. The data reported here are important because they demonstrate that the secondary sulfonamide unit represents a one-sided hydrogen bond complement to an α -amino acid residue in the β -strand conformation.

Acknowledgment. This research was supported by the NIH (GM61238). J.M.L. was supported by a NSF Predoc-

toral Fellowship; J.D.F. was funded in part by a Molecular Biophysics Training Grant from NIGMS. NMR equipment was purchased in part with funds from the NSF (CHE-9629688) and the NIH (1 S10 RR0 8389-01).

OL016237X